SHRINKING BASES AND BANACH SPACES *Z**/Z*

BY

M. VALDIVIA[†] *Fzzcultad de Matemt~ticas, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain*

ABSTRACT

Some results on shrinking bases and Banach spaces of type *Z**/Z* **are** given in this paper. As a consequence, it is proved that a separable Banach space X is **isometric to a space Y**/Ywhere Y* has a shrinking basis.**

The vector spaces used here are defined on the field K of real or complex numbers. Our notation is standard. By the term "subspace" we always mean a linear subspace. Given a subspace Y of a Banach space X, \tilde{Y} will denote the weak-star closure of Y in X^{**} . We shall use $\langle \cdot, \cdot \rangle$ for the bilinear form of a duality. A Banach space X is *quasireflexive* if X^{**}/X has finite dimension. It is well known [2] that there are quasireflexive non-reflexive Banach spaces.

1. Shrinking bases

We shall use in the sequel the following two results which can be found in [7] and [8] respectively:

(a) Let Z be a separable Banach space. Let (z_{mn}) be a double sequence in Z^* *such that* $(z_{mn})_{n=1}^{\infty}$ *converges to the origin in the weak-star topology and*

 $0 < \inf\{\|z_{mn}\| : n = 1, 2, \ldots\}, \qquad m = 1, 2, \ldots$

Then there is a subsequence $(y_{mn})_{n=1}^{\infty}$ of $(z_{mn})_{n=1}^{\infty}$, $m = 1, 2, \ldots$, such that

(1)
$$
y_{11}, y_{12}, y_{21}, \ldots, y_{1n}, y_{2(n-1)}, \ldots, y_{(n-1)2}, y_{n1}, \ldots
$$

is a weak-star basic sequence in Z. Moreover, if Z is separable, (1) can be chosen to be boundedly complete.*

* Supported in part by CAICYT.

Received December 22, 1987

(b) Let Y be a closed subspace of a Banach space X. Then $X + \tilde{Y}$ is a closed *subspace of X**.*

The result quoted as (a) is a double-sequence version of a theorem due to W. B. Johnson and H. P. Rosenthal [4].

THEOREM 1. *Let X be an infinite-dimensional Banach space such that X* is separable. Let T be a closed separable subspace of X** containing X. Then there is a closed subspace Y of X with the following properties:*

(I) Y has a shrinking basis.

(2) $X + \tilde{Y}$ contains T.

PROOF. In the case $X = T$ it is enough to select a shrinking basic sequence in $X[1]$ and define Y as its closed linear hull. Let us suppose now that X and T do not coincide. In this case we can choose a sequence (z_n) in $T \sim X$ such that its closed linear hull coincides with T . For every positive integer m we select a sequence (t_{mn}) of non-zero elements in X which weak-star converges to z_m . **Obviously**

 $0 < \inf\{\|t_{mn} - z_m\| : n = 1, 2, \ldots\}$

and

$$
\lim_{n} \langle t_{mn} - z_m, u \rangle = 0, \quad \text{for every } u \in X^*,
$$

hence we can apply result (a) to X* obtain a subsequence $(y_{mn})_{n=1}^{\infty}$ of $(t_{mn})_{n=1}^{\infty}$ such that

(2)

$$
y_{11} - z_1, y_{12} - z_1, y_{21} - z_2, \ldots, y_{1n} - z_1, y_{2(n-1)} - z_2, \ldots,
$$

$$
y_{(n-1)2} - z_{n-1}, y_{n1} - z_n, \ldots.
$$

is a weak-star basic sequence in X^{**} . Let S be the weak-star closed linear hull of (2) in X^{**} , $Y := S \cap X$. Given two positive integers p, q,

(3)
$$
(y_{pq} - z_p) - (y_{pn} - z_p) = y_{pq} - y_{pn} \in Y
$$

for every positive integer n. Letting n converge to ∞ we get

$$
y_{pq}-z_p\in\tilde{Y}
$$

hence S coincides with \tilde{Y} . If Y^{\perp} denotes the subspace of X^* orthogonal to Y, X^*/Y^{\perp} has a basis (and this space can be identified with Y^*) hence Y has a shrinking basis, after a result of W. B. Johson, H. P. Rosenthal and M. Zippin [5]. Finally

$$
z_m \in X + \tilde{Y}, \qquad m = 1, 2, \ldots,
$$

then T is contained in $X + \tilde{Y}$ in view of result (b). q.e.d.

The following corollary is a straightforward consequence of the former theorem:

COROLLARY 1.1. *An infinite-dimensional Banach space X such that X* is separable is quasireflexive if and only if every closed subspace of X with a shrinking basis is quasireflexive.*

We proved the following result in [8]:

(c) *Let X be an infinite-dimensional Banach space such that X** is separable.* Let T be a closed subspace of X^{**} containing X. Then there is an infinite*dimensional closed subspace Y of X such that* $X + \tilde{Y} = T$.

THEOREM 2. Let X be an infinite-dimensional Banach space such that X^{**} *is separable. Let T be a closed subspace of X** containing X. Then there exists a closed subspace Y of X such that*

- *(1) Both Y and Y* have shrinking bases,*
- (2) $X + \tilde{Y} = T$.

PROOF. In the case $T = X$ the result (c) gives an infinite-dimensional reflexive subspace Z of X. We can take as Y a subspace of Z with basis. (In [4] it is proved for the first time that every infinite-dimensional Banach space X such that X^{**} is separable has infinite-dimensional reflexive subspaces.)

Let us suppose that $T \neq X$. Again by the result (c) we can take a closed subspace Z of X such that $Y + \tilde{Z} = T$. Let (z_m) be a total sequence in \tilde{Z} such that

$$
z_m \notin \mathbb{Z}, \qquad m=1,2,\ldots.
$$

Given a positive integer m we can choose a sequence (t_{mn}) of non-zero elements in Z converging to z_m in the weak-star topology of X^{**} . Proceeding as in the proof of Theorem 1 we can select a subsequence $(y_{mn})_{n=1}^{\infty}$ of (t_{mn}) such that (2) (cf. the proof of Theorem 1) is a weak-star basic sequence in X^{**} . Since Z is separable, we can even choose (2) to be boundedly complete. If S denote the weak-star closed linear hull of (2) in X^{**} , let $Y := S \cap X$.

In both cases Y and Y* have shrinking bases and $X + \tilde{Y}$ coincides with T. q.e.d.

COROLLARY 1.2. *Let V be a separable Banach space such that V**/V is*

isomorphic to C [0, 1]. *Then, for any separable Banach space X, there exists a closed subspace Y of V with the following properties:*

- *(1) Both Y and Y* have shrinking bases.*
- (2) *Y**/Y is isomorphic to X.*

PROOF. Let ζ be the canonical mapping from V^{**} onto V^{**}/V . Let Z be a subspace of V^{**}/V isomorphic to X. Let $T := \zeta^{-1}(Z)$. Theorem 2 gives a closed subspace Y of V such that both Y and Y* have shrinking bases and $V + \tilde{Y} = T$. Let φ and ψ be the canonical mappings from \tilde{Y} onto \tilde{Y}/Y and from T onto T/V respectively. Given $\tilde{y} \in \tilde{Y}/Y$ let y be an element of \tilde{Y} such that $\varphi(y) = \tilde{y}$. Defining $f(\tilde{y}) = \psi(y)$, it is obvious that f is an isomorphism from \tilde{Y}/Y onto *T/V*. Then we reach the conclusion observing that \tilde{Y}/Y is isomorphic to Y^{**}/Y and T/V is isomorphic to X . q.e.d.

2. Separable Banach spaces *Z**/Z*

J. Lindestrauss [6], following some work done by R. C. James [3], proved that if X is a separable Banach space, there exists another separable Banach space Z such that a Z^{**}/Z is isomorphic to X and Z^* has a shrinking basis. Here we shall prove that Z can be chosen in such a way that Z^{**}/Z is even isometric to X. We shall prove also that there is a Banach space L with L^{**} separable which is universal for the class of all separable Banach spaces X in the following sense: given a separable Banach space X , there exists a closed subspace Y of L such that $(L/Y)^{**}/(L/Y)$ is isometric to X.

PROPOSITION 1. *Let Z be an infinite-dimensional Banach space such that* Z^{**} is separable. Let T be a closed subspace of Z^{**} such that $Z \subset T$. Then there *exists a closed subspace Y of Z with the following properties:*

- *(1) Z~ Y has a shrinking basis.*
- (2) *(Z/Y)**/(Z/Y) is isometric to Z**/T.*

PROOF. Let us consider first the case $T = Z^{**}$. Let F be a reflexive subspace of Z^* with basis [4] and let Y be the subspace of Z orthogonal to F. Then Z/Y has a shrinking basis and $Z + \tilde{Y} = T$. To complete the proof let us suppose now $T \neq Z^{**}$. We shall denote by T^{\perp} the subspace of Z^{***} orthogonal to T. Let

$$
\{z_1, z_2, \ldots, z_n, \ldots\}
$$

be a weak-star total subset of T^{\perp} such that $|| z_n || = 1, n = 1, 2, \ldots$. Now result (c) gives a closed subpsace U of Z such that $Z + \tilde{U} = T$. Let P be the subspace of Z^* orthogonal to U. For any positive integer m we can find a

Vol. 62, 1988 SHRINKING BASES 351

sequence (t_{mn}) in P, with $|| t_{mn} || \neq 0$, $n = 1, 2, \ldots$, which converges to z_m in the weak-star topology of Z^{***} .

It follows that

$$
\lim_{n} \langle z, t_{mn} \rangle = 0, \qquad z \in \mathbb{Z}, \quad m = 1, 2, \ldots,
$$

hence, using the result (a) and the fact that Z^* is separable, we can get a subsequence $(y_{mn})_{n=1}^{\infty}$ of $(t_{mn})_{n=1}^{\infty}$, $m = 1, 2, \ldots$, such that

(4)
$$
y_{11}, y_{12}, y_{21}, \ldots, y_{1n}, y_{2(n-1)}, \ldots, y_{(n-1)2}, y_{n1}, \ldots
$$

is a boundedly complete basis sequence. Thus, if Y denotes the subspace of Z orthogonal to the set consisting of the vectors in (4) , Z/Y has a shrinking basis and \tilde{Y} is contained in T (this follows from the fact that z_n is a cluster point of (4) in Z*** equipped with the weak-star topology, $n = 1, 2, ...$). Moreover, \tilde{Y} contains \tilde{U} and then $Z + \tilde{Y} = T$.

Let Y^{\perp} be the subspace of Z^* orthogonal to Y. Then \tilde{Y} is the subspace of Z^* orthogonal to Y^{\perp} . Given an arbitrary element u of $(Z/Y)^{**}$, let us denote by $\psi(u)$ the linear manifold in Z** whose elements restricted to Y^{\perp} coincide with u. $\psi(u)$ is an element of Z^{**}/\tilde{Y} and, in the light of the Hahn-Banach theorem, ψ is an isometry from $(z/Y)^{**}$ onto Z^{**}/\tilde{Y} . It follows that

$$
\psi(Z/Y)=T/\tilde{Y},
$$

hence $(Z^{**}/\tilde{Y})/(T/\tilde{Y})$ is isometric to $(Z/Y)^{**}/(Z/Y)$. Finally, since \tilde{Y} is contained in *T*, Z^{**}/T is isometric to $(Z^{**}/\tilde{Y})/(T/\tilde{Y})$. q.e.d.

In [3, Thm. 1], R. C. James proves that if X is a Banach space with a shrinking basis, there exists a separable Banach space Z having a topological complement Z_1 in Z^{**} such that Z_1 is isometric to X^* . Moreover, the corresponding projection mapping from Z^{**} onto Z_1 has norm equal to one. Using this result we can fix a separable Banach space L having a topological complement S in L^{**} such that S is isometric to l^1 and the corresponding projection mapping from L^{**} onto S has a norm equal to one.

THEOREM 3. *Given a separable Banach space X, there exists in L a closed subspace Y with the following properties:*

(1) *L/Y has a shrinking basis.*

(2) $(L/Y)^{**}/(L/Y)$ is isometric to x.

352 M. VALDIVIA Isr. J. Math.

PROOF. The subspace S of L is isometric to l^1 , hence we can find a closed subspace H of S such that S/H is isometric to X . Let

$$
T:=L+H.
$$

Then T is a closed subspace of L^{**} which contains L. Proposition 1 applies and we get a closed subspace Y of L such that *L/Y* has a shrinking basis and (L/Y) ^{**}/ (L/Y) is isometric to L ^{**}/*T*.

Let $\varphi(\psi)$ be the canonical mapping from L^{**} onto L^{**}/T (from S onto S/H). Given an arbitrary element u in L^{**}/T we can find x in L^{**} such that $\varphi(x) = u$. Let x_1 be the projection of x onto S along L. Let

$$
\zeta(u) = \psi(x_1).
$$

Then it is easy to prove that ζ is an isometry from L^{**}/T onto S/H . Therefore $(L/Y)^*/(L/Y)$ is isometric to X. q.e.d.

PROPOSITION 2. *Let X be an infinite-dimensional Banach space such that X** is separable. Then there exists a closed subspace Y of X with the following properties:*

(1) *Both Y and Y* have shrinking basis.*

(2) *Y**/Y is isometric to X**/X.*

PROOF. In the case that X is reflexive, it is enough to choose as Y a closed subspace Y of X having a basis. Otherwise let B be the closed unit ball of X. Let $\| \cdot \|$ be the norm both in X^{**} and in X^{**}/X . Let φ be the canonical mapping from X^{**} onto X^{**}/X . Denoting by A the interior of $\varphi(\tilde{B})$ in X^{**}/X , we choose in A a dense countable subset M such that $0 \notin M$. Given $x \in M$ and a positive integer n, let us choose a vector $y(x, n)$ in X^{**}/X such that

 $\| \nu(x, n) \| < \| x \| + 1/n, \quad \varphi(\nu(x, n)) = x.$

The elements in

$$
\{y(x,n):x\in M,n=1,2,\ldots\}
$$

can be ordered in a single sequence (z_n) . Given a positive integer m we can find a sequence (t_{mn}) in Z converging to z_m in the weak-star topology of Z^{**} and such that

(5)
$$
\|t_{mn}\| = \|z_m\|, \quad n = 1, 2, \ldots
$$

Proceeding as in the proof of Theorem 1 we can find a subsequence $(y_{mn})_{n=1}^{\infty}$ of $(t_{mn})_{n=1}^{\infty}$, $n = 1, 2, \ldots$, such that the sequence (2) becomes a weak-star basic

Vol. 62, 1988 SHRINKING BASES 353

sequence in X^{**} . Since X^{**} is separable, we can choose (y_{mn}) such that (2) is boundedly complete. Let S be the weak-star closed linear hull of (2) in X^{**} , and let $Y := S \cap X$. Then \tilde{Y} coincides with S. Denoting by Y^{\perp} the subspace of X^* orthogonal to Y, we can identify Y^* with X^*/Y^{\perp} as usual. It follows that Y^* has a shrinking basis, hence, by a result in [5], Y has also a shrinking basis. Moreover

$$
X\cup\{z_m\colon m=1,2,\ldots\}
$$

is a total subset of X^{**} hence, by result (b), $X + \tilde{Y}$ coincides with X^{**} .

Let $\|\cdot\|$ be the gauge of $B \cap Y$ in \tilde{Y} . We shall assume Y endowed with the norm $\|\cdot\|$. The corresponding norm in \tilde{Y}/Y shall be denoted by $\|\cdot\|$ also. The usual identification of Y^* and X^*/Y^{\perp} makes \tilde{Y} and Y^* isometrically isomorphic, hence Y^{**}/Y is also isometrically isomorphic to \tilde{Y}/Y .

Let ψ be the canonical mapping from \tilde{Y} onto \tilde{Y}/Y . Given an arbitrary element x in X^{**}/X let u be an element in X^{**} such that $\varphi(u) = x$. Let

$$
u=u_1+u_2, \qquad u_1\in X, \quad u_2\in \tilde{Y}, \quad \zeta(u)=\psi(u_2).
$$

It is easy to prove that ζ is a linear injective mapping from X^{**}/X onto \tilde{Y}/Y . Let y be an element in \tilde{Y}/Y such that $|||y||| < 1$. We can find an element y in \tilde{Y} such that simultaneously $|||y||| < 1$ and $\psi(y) = y$. It is obvious that $||\!\!\Vert v \Vert|$ > $||\!\!\Vert v \Vert$. Hence

$$
\|\zeta^{-1}(y)\| = \|\varphi(y)\| \leq \|y\| \leq \|y\| < 1.
$$

Therefore, denoting by P the interior of $\psi(B \cap Y)$ in \tilde{Y}/Y , it follows that

 $\zeta(A)\supset P$.

Take x to be an arbitrary element of M . We can find a positive integer n such that

$$
\parallel x \parallel + 1/n < 1.
$$

Another positive integer m can be determined in such a way that

(6)
$$
\|z_m\| < \|x\| + 1/n < 1, \quad \varphi(z_m) = x.
$$

Since z_m belongs to \tilde{Y} , it follows from (5) and (6) that

$$
\|\zeta(x)\| = \|\psi(z_m)\| < \|z_m\| < 1
$$

hence

$$
\zeta(A)\subset P.
$$

Then ζ is an isometry from X^{**}/X onto \tilde{Y}/Y . **q.e.d.**

354 M. VALDIVIA Isr. J. Math.

THEOREM 4. *Given a separable Banach space X there exists a Banach space Y with the following properties:*

 (1) *Both Y and Y* have shrinking basis.*

(2) *X is isometric to Y**/Y.*

PROOF. By Theorem 3 there exists an infinite-dimensional separable Banach space Z such that *Z**/Z* **is isometric to X. By Proposition 2 there exists a closed subspace Y of Z such that Y and Y* have shrinking bases and** Y^{**}/Y is isometric to X. $q.e.d.$

REFERENCES

1. D. W. Dean, I. Singer and L. Sterbach, *On shrinking basic sequences in Banach spaces,* Studia Math. 40 (1971), 23-33.

2. R. C. James, *Bases and reflexivity of Banach spaces,* Ann. of Math. 52 (1950), 518-527.

3. R. C. James, *Separate conjugate spaces,* Pacific J. Math. 10 (1960), 563-571.

4. W. B. Johnson and H. P. Rosenthal, *On w*-basic sequences and their applications to the theory of Banach spaces,* Studia Math. 43 (1972), 77-79.

5. W. B. Johnson, H. P. Rosenthal and W. Zippin, *On bases, finite-dimensional decompositions and weaker structures in Banach spaces,* Isr. J. Math. 9 (1971), 488-506.

6. J. Lindenstrauss, *On Jame's paper "separate conjugate spaces",* Isr. J. Math. 9 (1971), 274-284.

7. M. Valdivia, *Bases y casirreflexividad en espacios de Banach,* Rev. Real Acad. Cienc. Exactas, Fisicas y Naturales, Madrid, to appear.

8. M. Valdivia, *Banach spaces X with X** separable*, *Isr. J. Math.* 59 (1987), 107-111.