SHRINKING BASES AND BANACH SPACES Z**/Z

BY

M. VALDIVIA[†] Facultad de Matemáticas, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain

ABSTRACT

Some results on shrinking bases and Banach spaces of type Z^{**}/Z are given in this paper. As a consequence, it is proved that a separable Banach space X is isometric to a space Y^{**}/Y where Y^* has a shrinking basis.

The vector spaces used here are defined on the field K of real or complex numbers. Our notation is standard. By the term "subspace" we always mean a linear subspace. Given a subspace Y of a Banach space X, \tilde{Y} will denote the weak-star closure of Y in X^{**}. We shall use $\langle \cdot, \cdot \rangle$ for the bilinear form of a duality. A Banach space X is *quasireflexive* if X^{**}/X has finite dimension. It is well known [2] that there are quasireflexive non-reflexive Banach spaces.

1. Shrinking bases

We shall use in the sequel the following two results which can be found in [7] and [8] respectively:

(a) Let Z be a separable Banach space. Let (z_{mn}) be a double sequence in Z* such that $(z_{mn})_{n=1}^{\infty}$ converges to the origin in the weak-star topology and

 $0 < \inf\{ \| z_{mn} \| : n = 1, 2, ... \}, m = 1, 2, ... \}$

Then there is a subsequence $(y_{mn})_{n=1}^{\infty}$ of $(z_{mn})_{n=1}^{\infty}$, $m = 1, 2, \ldots$, such that

(1)
$$y_{11}, y_{12}, y_{21}, \ldots, y_{1n}, y_{2(n-1)}, \ldots, y_{(n-1)2}, y_{n1}, \ldots$$

is a weak-star basic sequence in Z^* . Moreover, if Z is separable, (1) can be chosen to be boundedly complete.

[†] Supported in part by CAICYT.

Received December 22, 1987

(b) Let Y be a closed subspace of a Banach space X. Then $X + \tilde{Y}$ is a closed subspace of X^{**} .

The result quoted as (a) is a double-sequence version of a theorem due to W. B. Johnson and H. P. Rosenthal [4].

THEOREM 1. Let X be an infinite-dimensional Banach space such that X^* is separable. Let T be a closed separable subspace of X^{**} containing X. Then there is a closed subspace Y of X with the following properties:

(1) Y has a shrinking basis.

(2) $X + \tilde{Y}$ contains T.

PROOF. In the case X = T it is enough to select a shrinking basic sequence in X[1] and define Y as its closed linear hull. Let us suppose now that X and T do not coincide. In this case we can choose a sequence (z_n) in $T \sim X$ such that its closed linear hull coincides with T. For every positive integer m we select a sequence (t_{mn}) of non-zero elements in X which weak-star converges to z_m . Obviously

$$0 < \inf\{ || t_{mn} - z_m || : n = 1, 2, ... \}$$

and

$$\lim_{m \to \infty} \langle t_{mn} - z_m, u \rangle = 0, \quad \text{for every } u \in X^*,$$

hence we can apply result (a) to X* obtain a subsequence $(y_{mn})_{n=1}^{\infty}$ of $(t_{mn})_{n=1}^{\infty}$ such that

(2)
$$y_{11} - z_1, y_{12} - z_1, y_{21} - z_2, \dots, y_{1n} - z_1, y_{2(n-1)} - z_2, \dots, y_{(n-1)2} - z_{n-1}, y_{n1} - z_n, \dots$$

is a weak-star basic sequence in X^{**} . Let S be the weak-star closed linear hull of (2) in X^{**} , $Y := S \cap X$. Given two positive integers p, q,

(3)
$$(y_{pq} - z_p) - (y_{pn} - z_p) = y_{pq} - y_{pn} \in Y$$

for every positive integer n. Letting n converge to ∞ we get

$$y_{pq} - z_p \in \tilde{Y}$$

hence S coincides with \tilde{Y} . If Y^{\perp} denotes the subspace of X* orthogonal to Y, X^*/Y^{\perp} has a basis (and this space can be identified with Y*) hence Y has a shrinking basis, after a result of W. B. Johson, H. P. Rosenthal and M. Zippin [5]. Finally

$$z_m \in X + \tilde{Y}, \quad m = 1, 2, \ldots,$$

then T is contained in $X + \tilde{Y}$ in view of result (b). q.e.d.

The following corollary is a straightforward consequence of the former theorem:

COROLLARY 1.1. An infinite-dimensional Banach space X such that X^* is separable is quasireflexive if and only if every closed subspace of X with a shrinking basis is quasireflexive.

We proved the following result in [8]:

(c) Let X be an infinite-dimensional Banach space such that X^{**} is separable. Let T be a closed subspace of X^{**} containing X. Then there is an infinitedimensional closed subspace Y of X such that $X + \tilde{Y} = T$.

THEOREM 2. Let X be an infinite-dimensional Banach space such that X^{**} is separable. Let T be a closed subspace of X^{**} containing X. Then there exists a closed subspace Y of X such that

- (1) Both Y and Y* have shrinking bases,
- (2) $X + \tilde{Y} = T$.

PROOF. In the case T = X the result (c) gives an infinite-dimensional reflexive subspace Z of X. We can take as Y a subspace of Z with basis. (In [4] it is proved for the first time that every infinite-dimensional Banach space X such that X^{**} is separable has infinite-dimensional reflexive subspaces.)

Let us suppose that $T \neq X$. Again by the result (c) we can take a closed subspace Z of X such that $Y + \tilde{Z} = T$. Let (z_m) be a total sequence in \tilde{Z} such that

$$z_m \notin Z, \qquad m=1, 2, \ldots$$

Given a positive integer m we can choose a sequence (t_{mn}) of non-zero elements in Z converging to z_m in the weak-star topology of X^{**} . Proceeding as in the proof of Theorem 1 we can select a subsequence $(y_{mn})_{n=1}^{\infty}$ of (t_{mn}) such that (2) (cf. the proof of Theorem 1) is a weak-star basic sequence in X^{**} . Since Z is separable, we can even choose (2) to be boundedly complete. If S denote the weak-star closed linear hull of (2) in X^{**} , let $Y := S \cap X$.

In both cases Y and Y* have shrinking bases and $X + \hat{Y}$ coincides with T. q.e.d.

COROLLARY 1.2. Let V be a separable Banach space such that V^{**}/V is

isomorphic to C[0, 1]. Then, for any separable Banach space X, there exists a closed subspace Y of V with the following properties:

- (1) Both Y and Y* have shrinking bases.
- (2) Y^{**}/Y is isomorphic to X.

PROOF. Let ζ be the canonical mapping from V^{**} onto V^{**}/V . Let Z be a subspace of V^{**}/V isomorphic to X. Let $T := \zeta^{-1}(Z)$. Theorem 2 gives a closed subspace Y of V such that both Y and Y* have shrinking bases and $V + \tilde{Y} = T$. Let φ and ψ be the canonical mappings from \tilde{Y} onto \tilde{Y}/Y and from T onto T/V respectively. Given $\tilde{y} \in \tilde{Y}/Y$ let y be an element of \tilde{Y} such that $\varphi(y) = \tilde{y}$. Defining $f(\tilde{y}) = \psi(y)$, it is obvious that f is an isomorphism from \tilde{Y}/Y onto T/V. Then we reach the conclusion observing that \tilde{Y}/Y is isomorphic to Y^{**}/Y and T/V is isomorphic to X.

2. Separable Banach spaces Z^{**}/Z

J. Lindestrauss [6], following some work done by R. C. James [3], proved that if X is a separable Banach space, there exists another separable Banach space Z such that a Z^{**}/Z is isomorphic to X and Z* has a shrinking basis. Here we shall prove that Z can be chosen in such a way that Z^{**}/Z is even isometric to X. We shall prove also that there is a Banach space L with L^{**} separable which is universal for the class of all separable Banach spaces X in the following sense: given a separable Banach space X, there exists a closed subspace Y of L such that $(L/Y)^{**}/(L/Y)$ is isometric to X.

PROPOSITION 1. Let Z be an infinite-dimensional Banach space such that Z^{**} is separable. Let T be a closed subspace of Z^{**} such that $Z \subset T$. Then there exists a closed subspace Y of Z with the following properties:

- (1) Z/Y has a shrinking basis.
- (2) $(Z/Y)^{**}/(Z/Y)$ is isometric to Z^{**}/T .

PROOF. Let us consider first the case $T = Z^{**}$. Let F be a reflexive subspace of Z* with basis [4] and let Y be the subspace of Z orthogonal to F. Then Z/Yhas a shrinking basis and $Z + \tilde{Y} = T$. To complete the proof let us suppose now $T \neq Z^{**}$. We shall denote by T^{\perp} the subspace of Z^{***} orthogonal to T. Let

$$\{Z_1, Z_2, \ldots, Z_n, \ldots\}$$

be a weak-star total subset of T^{\perp} such that $||z_n|| = 1$, n = 1, 2, ... Now result (c) gives a closed subprace U of Z such that $Z + \tilde{U} = T$. Let P be the subspace of Z^* orthogonal to U. For any positive integer m we can find a

SHRINKING BASES

sequence (t_{mn}) in P, with $||t_{mn}|| \neq 0$, n = 1, 2, ..., which converges to z_m in the weak-star topology of Z^{***} .

It follows that

$$\lim_{n} \langle z, t_{mn} \rangle = 0, \qquad z \in \mathbb{Z}, \quad m = 1, 2, \ldots,$$

hence, using the result (a) and the fact that Z^* is separable, we can get a subsequence $(y_{mn})_{n=1}^{\infty}$ of $(t_{mn})_{n=1}^{\infty}$, m = 1, 2, ..., such that

(4)
$$y_{11}, y_{12}, y_{21}, \ldots, y_{1n}, y_{2(n-1)}, \ldots, y_{(n-1)2}, y_{n1}, \ldots$$

is a boundedly complete basis sequence. Thus, if Y denotes the subspace of Z orthogonal to the set consisting of the vectors in (4), Z/Y has a shrinking basis and \tilde{Y} is contained in T (this follows from the fact that z_n is a cluster point of (4) in Z^{***} equipped with the weak-star topology, n = 1, 2, ...). Moreover, \tilde{Y} contains \tilde{U} and then $Z + \tilde{Y} = T$.

Let Y^{\perp} be the subspace of Z^* orthogonal to Y. Then \tilde{Y} is the subspace of Z^* orthogonal to Y^{\perp} . Given an arbitrary element u of $(Z/Y)^{**}$, let us denote by $\psi(u)$ the linear manifold in Z^{**} whose elements restricted to Y^{\perp} coincide with $u. \psi(u)$ is an element of Z^{**}/\tilde{Y} and, in the light of the Hahn-Banach theorem, ψ is an isometry from $(z/Y)^{**}$ onto Z^{**}/\tilde{Y} . It follows that

$$\psi(Z/Y) = T/\tilde{Y},$$

hence $(Z^{**}/\tilde{Y})/(T/\tilde{Y})$ is isometric to $(Z/Y)^{**}/(Z/Y)$. Finally, since \tilde{Y} is contained in T, Z^{**}/T is isometric to $(Z^{**}/\tilde{Y})/(T/\tilde{Y})$. q.e.d.

In [3, Thm. 1], R. C. James proves that if X is a Banach space with a shrinking basis, there exists a separable Banach space Z having a topological complement Z_1 in Z^{**} such that Z_1 is isometric to X^* . Moreover, the corresponding projection mapping from Z^{**} onto Z_1 has norm equal to one. Using this result we can fix a separable Banach space L having a topological complement S in L^{**} such that S is isometric to l^1 and the corresponding projection mapping from L^{**} onto S has a norm equal to one.

THEOREM 3. Given a separable Banach space X, there exists in L a closed subspace Y with the following properties:

(1) L/Y has a shrinking basis.

(2) $(L/Y)^{**}/(L/Y)$ is isometric to x.

M. VALDIVIA

PROOF. The subspace S of L is isometric to l^1 , hence we can find a closed subspace H of S such that S/H is isometric to X. Let

$$T:=L+H.$$

Then T is a closed subspace of L^{**} which contains L. Proposition 1 applies and we get a closed subspace Y of L such that L/Y has a shrinking basis and $(L/Y)^{**/(L/Y)}$ is isometric to $L^{**/T}$.

Let $\varphi(\psi)$ be the canonical mapping from L^{**} onto L^{**}/T (from S onto S/H). Given an arbitrary element u in L^{**}/T we can find x in L^{**} such that $\varphi(x) = u$. Let x_1 be the projection of x onto S along L. Let

$$\zeta(u) = \psi(x_1).$$

Then it is easy to prove that ζ is an isometry from $L^{**/T}$ onto S/H. Therefore $(L/Y)^*/(L/Y)$ is isometric to X. q.e.d.

PROPOSITION 2. Let X be an infinite-dimensional Banach space such that X^{**} is separable. Then there exists a closed subspace Y of X with the following properties:

(1) Both Y and Y* have shrinking basis.

(2) Y^{**}/Y is isometric to X^{**}/X .

PROOF. In the case that X is reflexive, it is enough to choose as Y a closed subspace Y of X having a basis. Otherwise let B be the closed unit ball of X. Let $\|\cdot\|$ be the norm both in X** and in X**/X. Let φ be the canonical mapping from X** onto X**/X. Denoting by A the interior of $\varphi(\tilde{B})$ in X**/X, we choose in A a dense countable subset M such that $0 \notin M$. Given $x \in M$ and a positive integer n, let us choose a vector y(x, n) in X**/X such that

 $|| y(x, n) || < || x || + 1/n, \quad \varphi(y(x, n)) = x.$

The elements in

$$\{y(x, n): x \in M, n = 1, 2, ...\}$$

can be ordered in a single sequence (z_n) . Given a positive integer *m* we can find a sequence (t_{mn}) in Z converging to z_m in the weak-star topology of Z^{**} and such that

(5)
$$||t_{mn}|| = ||z_m||, \quad n = 1, 2, ...$$

Proceeding as in the proof of Theorem 1 we can find a subsequence $(y_{mn})_{n=1}^{\infty}$ of $(t_{mn})_{n=1}^{\infty}$, n = 1, 2, ..., such that the sequence (2) becomes a weak-star basic

SHRINKING BASES

sequence in X^{**} . Since X^{**} is separable, we can choose (y_{mn}) such that (2) is boundedly complete. Let S be the weak-star closed linear hull of (2) in X^{**} , and let $Y := S \cap X$. Then \tilde{Y} coincides with S. Denoting by Y^{\perp} the subspace of X^{*} orthogonal to Y, we can identify Y^{*} with X^{*}/Y^{\perp} as usual. It follows that Y^{*} has a shrinking basis, hence, by a result in [5], Y has also a shrinking basis. Moreover

$$X \cup \{z_m : m = 1, 2, \ldots\}$$

is a total subset of X^{**} hence, by result (b), $X + \tilde{Y}$ coincides with X^{**} .

Let $||| \cdot |||$ be the gauge of $B \cap Y$ in \tilde{Y} . We shall assume Y endowed with the norm $||| \cdot |||$. The corresponding norm in \tilde{Y}/Y shall be denoted by $||| \cdot |||$ also. The usual identification of Y^* and X^*/Y^{\perp} makes \tilde{Y} and Y^* isometrically isomorphic, hence Y^{**}/Y is also isometrically isomorphic to \tilde{Y}/Y .

Let ψ be the canonical mapping from \tilde{Y} onto \tilde{Y}/Y . Given an arbitrary element x in X^{**}/X let u be an element in X^{**} such that $\varphi(u) = x$. Let

$$u = u_1 + u_2,$$
 $u_1 \in X,$ $u_2 \in \tilde{Y},$ $\zeta(u) = \psi(u_2).$

It is easy to prove that ζ is a linear injective mapping from X^{**}/X onto \tilde{Y}/Y . Let y be an element in \tilde{Y}/Y such that |||y||| < 1. We can find an element v in \tilde{Y} such that simultaneously |||v||| < 1 and $\psi(v) = y$. It is obvious that |||v||| > ||v||. Hence

$$\|\zeta^{-1}(y)\| = \|\varphi(v)\| \leq \|v\| \leq \|v\| < 1.$$

Therefore, denoting by P the interior of $\psi(B \cap Y)$ in \tilde{Y}/Y , it follows that

 $\zeta(A) \supset P$.

Take x to be an arbitrary element of M. We can find a positive integer n such that

$$||x|| + 1/n < 1.$$

Another positive integer *m* can be determined in such a way that

(6)
$$||z_m|| < ||x|| + 1/n < 1, \quad \varphi(z_m) = x.$$

Since z_m belongs to \hat{Y} , it follows from (5) and (6) that

$$||| \zeta(x) ||| = ||| \psi(z_m) ||| < ||| z_m ||| < 1$$

hence

$$\zeta(A) \subset P.$$

Then ζ is an isometry from X^{**}/X onto \tilde{Y}/Y .

M. VALDIVIA

THEOREM 4. Given a separable Banach space X there exists a Banach space Y with the following properties:

(1) Both Y and Y* have shrinking basis.

(2) X is isometric to Y^{**}/Y .

PROOF. By Theorem 3 there exists an infinite-dimensional separable Banach space Z such that Z^{**}/Z is isometric to X. By Proposition 2 there exists a closed subspace Y of Z such that Y and Y* have shrinking bases and Y^{**}/Y is isometric to X. q.e.d.

References

1. D. W. Dean, I. Singer and L. Sterbach, On shrinking basic sequences in Banach spaces, Studia Math. 40 (1971), 23-33.

2. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.

3. R. C. James, Separate conjugate spaces, Pacific J. Math. 10 (1960), 563-571.

4. W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the theory of Banach spaces, Studia Math. 43 (1972), 77-79.

5. W. B. Johnson, H. P. Rosenthal and W. Zippin, On bases, finite-dimensional decompositions and weaker structures in Banach spaces, Isr. J. Math. 9 (1971), 488-506.

6. J. Lindenstrauss, On Jame's paper "separate conjugate spaces", Isr. J. Math. 9 (1971), 274–284.

7. M. Valdivia, Bases y casirreflexividad en espacios de Banach, Rev. Real Acad. Cienc. Exactas, Físicas y Naturales, Madrid, to appear.

8. M. Valdivia, Banach spaces X with X** separable, Isr. J. Math. 59 (1987), 107-111.